DENSITY (UNIT WEIGHT), YIELD, AND AIR CONTENT (GRAVIMETRIC) OF CONCRETE FOP FOR AASHTO T 121

Scope

This method covers the determination of density, or unit weight, of freshly mixed concrete in accordance with AASHTO T 121-24. It also provides formulas for calculating the volume of concrete produced from a mixture of known quantities of component materials and provides a method for calculating cement content and cementitious material content – the mass of cement or cementitious material per unit volume of concrete. A procedure for calculating water/cement ratio is also covered.

Warning—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

Apparatus

- Measure: May be the bowl portion of the air meter used for determining air content under the FOP for AASHTO T 152. Otherwise, it shall be a cylindrical metal container meeting the requirements of AASHTO T 121. The capacity and dimensions of the measure shall conform to those specified in Table 1.
- Balance or scale: Accurate to within 45 g (0.1 lb) or 0.3 percent of the test load, whichever is greater, at any point within the range of use.
- Tamping rod: 16 mm (5/8 in.) diameter and 400 mm (16 in.) to 600 mm (24 in.) long, having a hemispherical tip the same diameter as the rod. (Hemispherical means "half a sphere"; the tip is rounded like half of a ball.)
- Vibrator: frequency at least 9000 vibrations per minute (150 Hz), at least 19 to 38 mm (3/4 to 1 1/2 in.) in diameter but not greater than 38 mm (1 1/2 in.), and the length of the shaft shall be at least 75 mm (3 in.) longer than the depth of the section being vibrated.
- Scoop: a receptacle of appropriate size so that each representative increment of the concrete sample can be placed in the container without spillage.
- Strike-off plate: A flat rectangular metal plate at least 6 mm (1/4 in.) thick or a glass or acrylic plate at least 12 mm (1/2 in.) thick, with a length and width at least 50 mm (2 in.) greater than the diameter of the measure with which it is to be used. The edges of the plate shall be straight and smooth within tolerance of 1.5 mm (1/16 in.).
- Mallet: With a rubber or rawhide head having a mass of 0.57 ±0.23 kg (1.25 ±0.5 lb) for use with measures of 14 L (1/2 ft³) or less or having a mass of 1.02 ±0.23 kg (2.25 ±0.5 lb) for use with measures larger than 14 L (1/2 ft³).

Concrete 12-1

	Dimensions of Measures*								
Capacity	Inside Diameter	Inside Height	Minimum 7 mm		Nominal Maximum Size of Coarse Aggregate***				
m ³ (ft ³)	mm (in.)	mm (in.)	Bottom	Wall	mm (in.)				
0.0071	203 ±2.54	213 ±2.54	5.1	3.0	25				
(1/4)**	(8.0±0.1)	(8.4 ± 0.1)	(0.20)	(0.12)	(1)				
0.0142	254 ± 2.54	279 ± 2.54	5.1	3.0	50				
(1/2)	(10.0 ± 0.1)	(11.0 ±0.1)	(0.20)	(0.12)	(2)				

Table 1 Dimensions of Measures

* *Note 1:* The indicated size of measure shall be for aggregates of nominal maximum size equal to or smaller than that listed.

** Measure may be the base of the air meter used in the FOP for AASHTO T 152.

*** Nominal maximum size: One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

Consolidation Selection

There are two methods of consolidating the concrete – rodding and vibration. If the slump is greater than 75 mm (3 in.), consolidation is by rodding. When the slump is 25 to 75 mm (1 to 3 in.), internal vibration or rodding can be used to consolidate the sample, but the method used must be that required by the agency to obtain consistent, comparable results. For concrete with slump less than 25 mm (1 in.), consolidate the sample by internal vibration. Do not consolidate self-consolidating concrete (SCC).

When using measures greater than 0.0142 m^3 (1/2 ft³), see AASHTO T 121.

Procedure

Sampling

1. Obtain the sample in accordance with the FOP for WAQTC TM 2. Testing may be performed in conjunction with the FOP for AASHTO T 152. When doing so, this FOP should be performed before the FOP for AASHTO T 152.

Note 2: If the two tests are being performed using the same sample, this test shall begin within five minutes of obtaining the sample.

Rodding

- 1. Dampen the inside of the measure and empty excess water.
- 2. Determine and record the mass of the measure.
- 3. Use the scoop to fill the measure approximately 1/3 full with concrete. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.

39_T121_short_24_errata

Concrete 12-2

- 4. Consolidate the layer with 25 strokes of the tamping rod, using the rounded end. Distribute the strokes evenly over the entire cross section of the concrete. Rod throughout its depth without hitting the bottom too hard.
- 5. Tap around the perimeter of the measure smartly 10 to 15 times with the mallet to close voids and release trapped air.
- 6. Add the second layer, filling the measure about 2/3 full. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 7. Consolidate this layer with 25 strokes of the tamping rod, penetrating about 25 mm (1 in.) into the bottom layer.
- 8. Tap around the perimeter of the measure smartly 10 to 15 times with the mallet.
- 9. Add the final layer, slightly overfilling the measure. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 10. Consolidate this layer with 25 strokes of the tamping rod, penetrating about 25 mm (1 in.) into the second layer.
- 11. Tap around the perimeter of the measure smartly 10 to 15 times with the mallet.
- 12. Continue with 'Strike-off and Determining Mass.'

Internal Vibration

- 1. Dampen the inside of the measure and empty excess water.
- 2. Determine and record the mass of the measure.
- 3. Use the scoop to fill the measure approximately 1/2 full with concrete. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 4. Insert the vibrator at three different points in each layer. Do not let the vibrator touch the bottom or side of the measure. Continue vibration only long enough to achieve proper consolidation of the concrete. Over vibration may cause segregation and loss of appreciable quantities of intentionally entrained air.
- 5. Slightly overfill the measure. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 6. Insert the vibrator at three different points, penetrating the first layer approximately 25 mm (1 in.). Do not let the vibrator touch the side of the measure.
- 7. Continue with 'Strike-off and Determining Mass.'

Self-Consolidating Concrete

- 1. Dampen the inside of the measure and empty excess water.
- 2. Determine and record the mass of the measure.
- 3. Use the scoop to slightly overfill the measure. Do not exceed 125 mm (5 in.) drop height. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 4. Continue with 'Strike-off and Determining Mass.'

39_T121_short_24_errata

Concrete 12-3

WAQTC

Strike-off and Determining Mass

- 1. After consolidation, the measure should be slightly over full, about 3 mm (1/8 in.) above the rim. If there is a great excess of concrete, remove a portion with the scoop. If the measure is under full, add a small quantity. This adjustment may be done only after consolidating the final layer and before striking off the surface of the concrete.
- 2. Press the strike-off plate flat against the top surface, covering approximately 2/3 of the measure.
- 3. Withdraw the strike-off plate with a sawing motion to finish the 2/3 originally covered.
- 4. Cover the original 2/3 again with the plate; finishing the remaining 1/3 with a sawing motion (do not lift the plate; continue the sawing motion until the plate has cleared the surface of the measure).
- 5. Finish the surface with the inclined edge of the strike-off plate. The surface should be smooth and free of voids.
- 6. Clean off all excess concrete from the exterior of the measure including the rim.
- 7. Determine and record the mass of the measure and the concrete.
- 8. If the air content of the concrete is to be determined, ensure the rim (flange) is clean and proceed to 'Strike-off and Air Content' Step 3 of the FOP for AASHTO T 152.

39_T121_short_24_errata

Concrete 12-4

Pub. October 2024 (v. 2025)

Page 4 of 18

WSDOT Materials Manual M 46-01.46 January 2025

WAQTC

FOP AASHTO T 121 (24)

Calculations

Mass of concrete in the measure

concrete mass =
$$M_c - M_m$$

Where:

Concrete mass = mass of concrete in measure M_c = mass of measure and concrete M_m = mass of measure

Density

$$\rho = \frac{concrete\ mass}{V_m}$$

Where:

 ρ = density of the concrete mix V_m = volume of measure (Annex)

Yield m³

$$Y_{m^3} = \frac{W}{\rho}$$

Where:

 Y_m^3 = yield (m³ of the batch of concrete) W = total mass of the batch of concrete

 $39_T121_short_24_errata$

Concrete 12-5

T 121

CONCRETE

WAQTC

Yield yd³

$$Y_{ft^3} = \frac{W}{\rho}$$
 $Y_{yd^3} = \frac{Y_{ft^3}}{27ft^3/yd^3}$

Where:

$Y_{\rm ft}{}^3$	=	yield (ft ³ of the batch of concrete)
$Y_{yd}{}^3 \\$	=	yield (yd ³ of the batch of concrete)
W	=	total mass of the batch of concrete
ρ	=	density of the concrete mix

Note 5: The total mass, W, includes the masses of the cement, water, and aggregates in the concrete.

Cement Content

$$N = \frac{N_t}{Y}$$

Where:

Note 6: Specifications may require Portland Cement content and supplementary cementitious materials content.

Water Content

The mass of water in a batch of concrete is the sum of:

- water added at batch plant
- water added in transit
- water added at jobsite
- free water on coarse aggregate*
- free water on fine aggregate*
- liquid admixtures (if required by the agency)
- *Mass of free water on aggregate

This information is obtained from concrete batch tickets collected from the driver. Use the Table 2 to convert liquid measures.

```
39_T121_short_24_errata
```

Concrete 12-6

FOP AASHTO T 121 (24)

Liquid Conversion Factors						
To Convert From	То	Multiply By				
Liters, L	Kilograms, kg	1.0				
Gallons, gal	Kilograms, kg	3.785				
Gallons, gal	Pounds, lb	8.34				
Milliliters, mL	Kilograms, kg	0.001				
Ounces, oz	Milliliters, mL	28.4				
Ounces, oz	Kilograms, kg	0.0284				
Ounces, oz	Pounds, lb	0.0625				
Pounds, lb	Kilograms, kg	0.4536				

Table 2

Mass of free water on aggregate

CA or FC Aggregate 1 + (Free Water Percentage/100) Free Water Mass = CA or FC Aggregate -

Where:

Free Water Mass	=	on coarse or fine aggregate
FC or CA Aggregate	=	mass of coarse or fine aggregate
Free Water Percentage	=	percent of moisture of coarse or fine aggregate

Water/Cement Ratio

Where:

Water Content	=	total mass of water in the batch
С	=	total mass of cementitious materials

Pub. October 2024 (v. 2025) 39_T121_short_24_errata Concrete 12-7

WAQTC

Example

Mass of concrete in measure (M _m)	16.290 kg (36.06 lb)
Volume of measure (V _m)	$0.007079 \text{ m}^3 (0.2494 \text{ ft}^3)$

From batch ticket:

Yards batched	4 yd^3
Cement	950 kg (2094 lb)
Fly ash	180 kg (397 lb)
Coarse aggregate	3313 kg (7305 lb)
Fine aggregate	2339 kg (5156 lb)
Water added at plant	295 L (78 gal)

Other

Water added in transit	0
Water added at jobsite	38 L (10 gal)
Total mass of the batch of concrete (W)	7115 kg (15,686 lb)
Moisture content of coarse aggregate	1.7%
Moisture content of coarse aggregate	5.9%

39_T121_short_24_errata

T 121

Density

$$\rho = \frac{concrete\ mass}{V_m}$$

$$\rho = \frac{16.920 \ kg}{0.007079 \ m^3} = 2390 \ kg/m^3 \ \rho = \frac{36.06 \ lb}{0.2494 \ ft^3} = 144.6 \ lb/ft^3$$

Given:

concrete mass =
$$16.920 \text{ kg} (36.06 \text{ lb})$$

 $V_m = 0.007079 \text{ m}^3 (0.2494 \text{ ft}^3) (\text{Annex})$

Yield m³

$$Y_{m^3} = \frac{W}{\rho}$$

$$Y_{m^3} = \frac{7115 \ kg}{2390 \ kg/m^3} = 2.98 \ m^3$$

Given:

Total mass of the batch of concrete (W), kg = 7115 kg

39_T121_short_24_errata

Concrete 12-9

Yield yd³

$$Y_{ft^3} = \frac{W}{\rho}$$
 $Y_{yd^3} = \frac{Y_{ft^3}}{27ft^3/yd^3}$

$$Y_{ft^3} = \frac{15,686 \, lb}{144.6 \, lb/ft^3} = 108.48 \, ft^3 \qquad Y_{yd^3} = \frac{108.48 \, ft^3}{27 \, ft^3/yd^3} = 4.02 \, yd^3$$

Given:

Total mass of the batch of concrete (W), lb = 15,686 lb

Cement Content

$$N = \frac{N_t}{Y}$$

$$N = \frac{950 \, kg + 180 \, kg}{2.98 \, m^3} = 379 \, kg/m^3 \, N = \frac{2094 \, lb + 397 \, lb}{4.02 \, yd^3} = 620 \, lb/yd^3$$

Given:

$$N_t (cement) = 950 \text{ kg} (2094 \text{ lb})$$

 $N_t (flyash) = 180 \text{ kg} (397 \text{ lb})$
 $Y = Y_m^3 \text{ or } Y_{yd}^3$

Note 6: Specifications may require Portland Cement content and supplementary cementitious materials content.

39_T121_short_24_errata

Concrete 12-10

WAQTC

Free water

Free Water Mass = CA or FC Aggregate
$$-\frac{CA \text{ or FC Aggregate}}{1 + (Free Water Percentage/100)}$$

CA Free Water =
$$3313 \ kg - \frac{3313 \ kg}{1 + (1.7/100)} = 55 \ kg$$

CA Free Water =
$$7305 \ lb - \frac{7305 \ lb}{1 + (1.7/100)} = 122 \ lb$$

FA Free Water =
$$2339 kg - \frac{2339 kg}{1 + (5.9/100)} = 130 kg$$

FA Free Water =
$$5156 \ lb - \frac{5156 \ lb}{1 + (5.9/100)} = 287 \ lb$$

Given:

CA aggregate=3313 kg (7305 lb)FC aggregate=2339 kg (5156 lb)CA moisture content=1.7%FC moisture content=5.9%

39_T121_short_24_errata

Concrete 12-11

WAQTC

Water Content

Total of all water in the mix.

Water Content = $[(78 \ gal + 10 \ gal) * 3.785 \ kg/gal] + 55 \ kg + 130 \ kg = 518 \ kg$

Water Content = [(78 gal + 10 gal) * 8.34 lb/gal] + 122 lb + 287 lb = 1143 lb

Given:

Water added at plant	=	295 L (78 gal)
Water added at the jobsite	=	38 L (10 gal)

Water/ Cement Ratio

$$W/C = \frac{518 \, kg}{950 \, kg + 180 \, kg} = 0.458 \quad W/C = \frac{1143 \, lb}{2094 \, lb + 397 \, lb} = 0.459$$

Report 0.46

Report

- Results on forms approved by the agency
- Sample ID
- Density (unit weight) to the nearest 1 kg/m³ (0.1 lb/ft³)
- Yield to the nearest 0.01 m³ (0.01 yd³)
- Cement content to the nearest 1 kg/m³ (1 lb/yd³)
- Cementitious material content to the nearest 1 kg/m³ (1 lb/yd³)
- Water/Cement ratio to the nearest 0.01

39_T121_short_24_errata

Concrete 12-12

FOP AASHTO T 121 (24)

ANNEX – STANDARDIZATION OF MEASURE

(Mandatory Information)

Standardization is a critical step to ensure accurate test results when using this apparatus. Failure to perform the standardization procedures as described herein will produce inaccurate or unreliable test results.

Apparatus

- Listed in the FOP for AASHTO T 121
 - Measure
 - Balance or scale
 - Strike-off plate
- Thermometer: Standardized liquid-in-glass, or electronic digital total immersion type, accurate to 0.5°C (1°F)

Procedure

- 1. Determine the mass of the dry measure and strike-off plate.
- 2. Fill the measure with water at a temperature between 16°C and 29°C (60°F and 85°F) and cover with the strike-off plate in such a way as to eliminate bubbles and excess water.
- 3. Wipe the outside of the measure and cover plate dry, being careful not to lose any water from the measure.
- 4. Determine the mass of the measure, strike-off plate, and water in the measure.
- 5. Determine the mass of the water in the measure by subtracting the mass in Step 1 from the mass in Step 4.
- 6. Measure the temperature of the water and determine its density from Table A1, interpolating as necessary.
- 7. Calculate the volume of the measure, V_m, by dividing the mass of the water in the measure by the density of the water at the measured temperature.

39_T121_short_24_errata

Concrete 12-13

WAQTC

Calculations

 $V_m = \frac{M}{\rho_w}$

Where:

V_{m}	=	volume of the mold
М	=	mass of water in the mold
$\rho_{\rm w}$	=	density of water at the measured temperature

Example

Mass of water in Measure	=	7.062 kg (15.53 lb)
Density of water at 23°C (73.4°F) (ρ_w)	=	997.54 kg/m ³ (62.274 lb/ft ³)

$$V_m = \frac{7.062 \ kg}{997.54 \ kg/m^3} = 0.007079 \ m^3 \qquad V_m = \frac{15.53 \ lb}{62.274 \ lb/ft^3} = 0.2494 \ ft^3$$

39_T121_short_24_errata

Concrete 12-14

Unit Mass of Water 15°C to 30°C							
°C	(°F)	kg/m ³	(lb/ft ³)	°C	(°F)	kg/m ³	(lb/ft ³)
15	(59.0)	999.10	(62.372)	23	(73.4)	997.54	(62.274)
15.6	(60.0)	999.01	(62.366)	23.9	(75.0)	997.32	(62.261)
16	(60.8)	998.94	(62.361)	24	(75.2)	997.29	(62.259)
17	(62.6)	998.77	(62.350)	25	(77.0)	997.03	(62.243)
18	(64.4)	998.60	(62.340)	26	(78.8)	996.77	(62.227)
18.3	(65.0)	998.54	(62.336)	26.7	(80.0)	996.59	(62.216)
19	(66.2)	998.40	(62.328)	27	(80.6)	996.50	(62.209)
20	(68.0)	998.20	(62.315)	28	(82.4)	996.23	(62.192)
21	(69.8)	997.99	(62.302)	29	(84.2)	995.95	(62.175)
21.1	(70.0)	997.97	(62.301)	29.4	(85.0)	995.83	(62.166)
22	(71.6)	997.77	(62.288)	30	(86.0)	995.65	(62.156)

Table A1

Report

- Measure ID •
- Date Standardized •
- Temperature of the water •
- Volume, V_m, of the measure •

39_T121_short_24_errata

Concrete 12-15

WAQTC

39_T121_short_24_errata

Concrete 12-16

PERFORMANCE EXAM CHECKLIST

DENSITY (UNIT WEIGHT), YIELD, AND AIR CONTENT (GRAVIMETRIC) OF CONCRETE FOP FOR AASHTO T 121

Par	ticipant Name	Exam Date				
Record the symbols "P" for passing or "F" for failing on each step of the checklist.						
Procedure Element		Trial 1	Trial 2			
1.	Mass of dampened measure determined?					
Fir	st Layer					
2.	Measure filled approximately one third full, moving a around the perimeter of the measure to evenly distrib as discharged?					
3.	Layer rodded throughout its depth 25 times, without striking the bottom of the measure, with hemispheric uniformly distributing strokes?					
4.	Perimeter of the measure tapped 10 to 15 times with	the mallet after rodding?				
Sec	cond layer					
5.	Measure filled approximately two thirds full, moving the perimeter of the measure to evenly distribute the					
6.	Layer rodded throughout its depth, just penetrating th (approximately 25 mm (1 in.) 25 times with hemisph uniformly distributing strokes?					
7.	Perimeter of the measure tapped 10 to 15 times with	the mallet after rodding?				
Th	ird layer					
8.	Measure slightly overfilled, moving a scoop around t measure to evenly distribute the concrete as discharge	-				
9.	Layer rodded throughout its depth, just penetrating th (approximately 25 mm (1 in.) 25 times with hemisph uniformly distributing strokes?					
10.	Perimeter of the measure tapped 10 to 15 times with after rodding each layer?	the mallet				
11.	Any excess concrete removed using a trowel or a sco small quantity of concrete added to correct a deficien consolidation of final layer?					

OVER

Concrete 6-21

Pub. October 2024 (v. 2025)

T 121

CONCRETE	WAQTC	FOP	AASHTO	T 121 (23)
Procedure Elemen	t		Trial 1	1 Trial 2
2/3 of the surface	laced flat on the measure covering approximately , then sawing action used to withdraw the strike-off p usly covered surface?	olate		
	laced flat on the measure covering approximately , then sawing action used to advance the plate across e surface?			
14. Strike off comple a smooth surface	ted using the inclined edge of the plate creating			
15. All excess concre determined?	te cleaned off and mass of full measure			
16. Concrete mass ca	lculated?			
17. Density calculate	d correctly?			
Comments: F	irst attempt: PassFail Second atte	empt:	Pass	_Fail
Examiner Signature _	WAQTC #:			

This checklist is derived, in part, from copyrighted material printed in ACI CP-1, published by the American Concrete Institute.

Concrete 6-22